LE 2240

Homework Problem \#001

For the circuit shown below:

a. How many nodes does the circuit have?

$$
4
$$

b. How many components (also commonly called branches) make up the circuit?

$$
6
$$

c. Determine the value of I_{1}.

$$
I_{1}+2 A=0 \Rightarrow I_{1}=-2 A
$$

d. Determine the value of I_{2}.

$$
I_{2}+5 A-3 A=0 \Rightarrow I_{2}=-2 A
$$

e. Determine the value of I_{3}.

$$
I_{3}+3 A-2 A=0 \Rightarrow I_{3}=-1 A
$$

LE 2240
Homework Problem \#002

For the circuit shown below:

a. How many nodes does the circuit have?

3
b. How many branches (components) make up the circuit?

$$
6
$$

c. Determine the value of I_{A}.

$$
-I_{A}+1 A-2 A+1 A=0 \Rightarrow I_{A}=0 A
$$

d. Determine the value of I_{B}.

$$
\begin{aligned}
& I_{B}+2 A-3 A=0 \Rightarrow I_{B}=1 A \\
& -I_{C}+3 A-1 A=0 \Rightarrow I_{C}=2 A
\end{aligned}
$$

ES 2240
Homework Problem \#003

For the circuit shown below:

a. How many nodes does the circuit have?
b. How many branches (components) make up the circuit?

$$
5
$$

c. Determine the value of V_{x}.

$$
-V_{x}+12 V=0 \Rightarrow V_{x}=12 V
$$

d. Determine the value of V_{y}.

$$
V_{y}-5 v-12 V=0 \Rightarrow V_{j}=17 V
$$

e. Determine the value of V_{z}.

$$
V_{z}-6 V-5 V-12 V=0 \Rightarrow V_{7}=23 V
$$

LE 2240

Homework Problem \#004

For the circuit shown below:

a. How many nodes does the circuit have?

$$
5
$$

b. How many branches make up the circuit?

$$
6
$$

c. Determine the value of V_{x}.

$$
4 V+10 \mathrm{~V}-V_{x}=0 \Rightarrow V_{x}=14 \mathrm{~V}
$$

d. Determine the value of V_{y}.

$$
V_{y}-10 V=0 \Rightarrow V_{y} \cdot 10 \mathrm{~V}
$$

e. Determine the value of V_{z}.

$$
\begin{aligned}
V_{z}-15 \mathrm{~V}-10 \mathrm{~V}-10 \mathrm{~V} & =0 \\
\Rightarrow V_{z} & =35 \mathrm{~V}
\end{aligned}
$$

EE 2240
Problem \#01

Find $V_{b d}$.

$$
\begin{gathered}
\text { KVL: }-12 V+3[k V+1 k I V+4 V=0 \\
4000 \mathrm{~V}=9 \mathrm{y} \\
{\left[=\frac{8}{4000}=2 \mathrm{~mA}\right.} \\
-12 V+6 V+V_{b d}=0 \\
V_{b 2}=6 \mathrm{~V}
\end{gathered}
$$

$$
\begin{aligned}
V_{a b} & =12-V_{b d} \\
V_{b c} & =V_{b d}-8 \\
V_{a b} & +V_{b c}+4-12=0 \quad\left(K V_{c}\right) \\
12-V_{b d} & \left(V_{b d}-4\right)+4-12=0
\end{aligned}
$$

ES 2240
Problem \#02

a. Determine the value of I_{1}.

$$
I_{1}=\frac{5 v}{1 \Omega}=5 \mathrm{~A}
$$

b. Determine the value of I_{2}.

$$
T_{2}=\frac{10 V}{2 n}=5 A
$$

c. Determine the value of I_{3}.

$$
\begin{aligned}
& V_{3}-10-5=0 \Rightarrow V_{3}=15 \mathrm{~V} \\
& I_{3}=\frac{V_{3}}{3 \Omega}=\frac{18 \mathrm{~V}}{3 \Omega}=5 \mathrm{~A}
\end{aligned}
$$

d. How much power is delivered by the 5 V independent voltage source?

$$
\begin{aligned}
& I=I_{3}+I_{1}=5 A+5 A=10 A \\
& P_{\text {del. }}=(5 \mathrm{~N})(10 \mathrm{~A})=50 \mathrm{~W}
\end{aligned}
$$

e. How much power is delivered by the 10 V independent voltage source?

$$
\begin{aligned}
& I_{x}=I_{2}+I_{3}=5+5=10 \mathrm{~A} \\
& P_{d_{e l}}=(10 \mathrm{~V})(10 \mathrm{~A})=100 \mathrm{~W} \\
& I_{x}-I+I_{1}-I_{2}=0 \\
& \quad I_{x}-10+5-5=0 \Rightarrow I_{x}=10 \mathrm{~A}
\end{aligned}
$$

LE 2240
Problem \#03

Determine the value of V_{x}.

$$
\begin{gathered}
10 I+5(I+3)=15 \\
5 I+15
\end{gathered}
$$

$$
\begin{aligned}
& 10 \Sigma+5 I=0 \\
& 15 I=0 \Rightarrow I=0 \\
& I+3=3 \\
& V_{x}=5(3 A)=15 V
\end{aligned}
$$

